

Accordo di Programma MiSE-ENEA

"Second life", vita accelerata e modellistica

F. Vellucci, M. Pasquali ENEA, Unità di Progetto Ricerca di Sistema Elettrico

Roma, 3 Luglio 2015

Second life - Definizione

Auto elettrica

Accumulo ad alta capacità

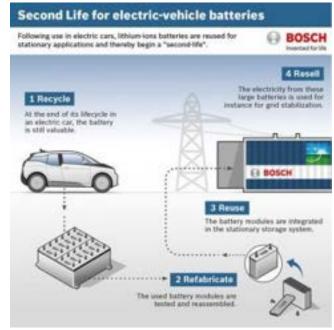
Ritiro celle automotive

Capacità residua <= 80 % della capacità nominale

La capacità residua può essere sufficiente per altre applicazioni?

Riutilizzare le batterie comporta un vantaggio economico?

Aumentare il valore operativo delle batterie



Second life - Stato dell'offerta tecnologica

Collaborazione Bosch BMW Vattenfall Auto elettrica Accumulo su rete di distribuzione

BOSCHInvented for life

Second life - Problematiche

Nel caso della second life alcune problematiche generiche dei sistemi batterie sono più evidenti

- Assemblaggio di celle omogenee
- •Reclutamento delle celle mediante criteri omogenei di ritiro e caratterizzazione
- Necessità di un'elettronica di controllo per l'ottimizzazione delle prestazioni e la gestione della sicurezza
- La costruzione del sistema batterie comporta un lavoro di assemblaggio

La vita nella seconda applicazione ha fondamentale importanza

Second life - Diagramma di flusso attività ENEA

Identificazione delle caratteristiche della cella degradata

Individuazione delle correnti continuative ed 'impulsive' per la costruzione di un profilo di lavoro che non provochi il degrado veloce della cella

Identificazione di applicazioni compatibili con il profilo di lavoro definito

Costruzione del profilo di test per la prova vita

Esecuzione della prova vita

Second Life – Celle sottoposte a test

L'ENEA ha effettuato una campagna sperimentale su celle al litio utilizzate per autotrazione

Fornitore FIB (ex FAAM) – Non utilizzati criteri uniformi per il ritiro dal servizio Ricevute 15 celle 90Ah LFP

Parametri considerati per la stima del degrado

- Capacità residua
- •Resistenza interna
- Rendimento amperorametrico
- Rendimento energetico
- Deformazione della geometria della cella

La conoscenza di queste grandezze è utile per la costruzione di modelli d'invecchiamento delle batterie secondo determinati profili di lavoro in applicazioni di second life

Celle al litio in prova

Second life - Apparecchiature utilizzate - 1°

Laboratorio prove su sistemi di accumulo Prestazioni elettriche

Ciclatori e camere climatiche

Ciclatore Eltra E-8325

Tensione	0 ÷ 12 V
Corrente max. dsch	150 A
Corrente max. ch	80 A

Second life - Apparecchiature utilizzate - 2°

Analisi con termocamera

Termocamera Flir S6

Sensore: 320x240 pixel

Sensibilità termica: < 0.1° C

Immagini termografiche ogni 10 minuti

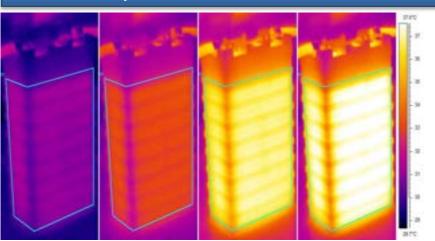
Andamenti nel tempo della temperatura su superfici

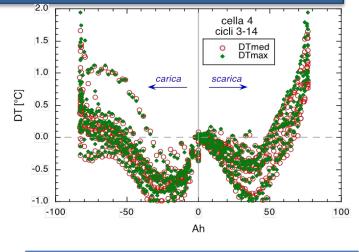
Tmed = temperatura media dell'area

Tmax = temperatura massima dell'area

Tamb = temperatura ambiente (sfondo)

Sincronizzazione con i dati del ciclatore





Second life - Apparecchiature utilizzate - 3°

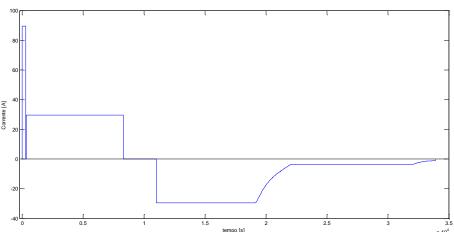
T durante una fase di scarica

∆T a vari regimi di corrente

L'analisi termica permette di:

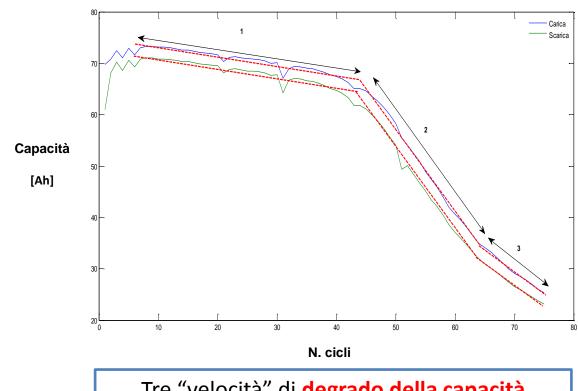
- •individuare punti di criticità (punti caldi)
- •indagare circa la necessità di raffreddamento in esercizio
- •indagare circa la necessità di riscaldamento nella fase di avviamento a freddo

Second Life – Prove preliminari


- •Esecuzione di cicli standard ed impulsi a 30 A, 45 A, 90 A
- •Eliminazione delle celle che non hanno superato le prove preliminari
- •Definizione di un profilo di lavoro

Profilo di lavoro "Pro"

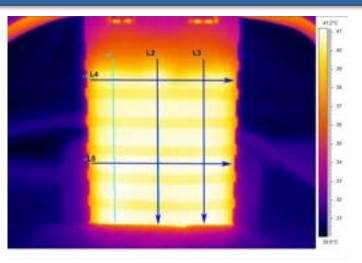
Deformazione dopo prove standard



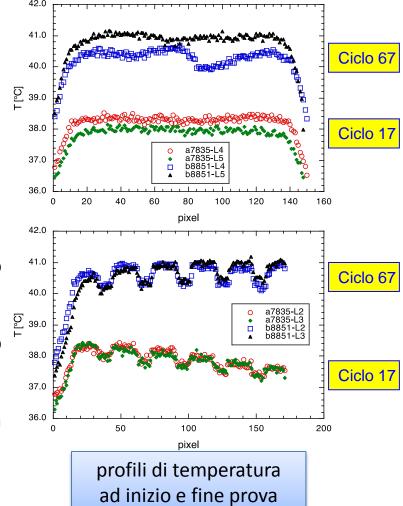
•Il ciclo schematizza una possibile applicazione stazionaria

Second Life – Prove vita profilo "Pro" - 1°

Risultati dall'analisi delle prestazioni elettriche su 5 celle

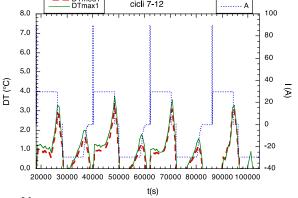


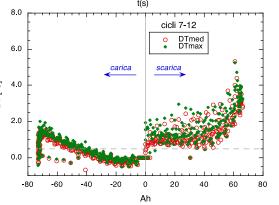
Deformazione della geometria del case della cella

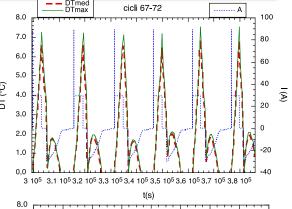

Second Life – Prove vita profilo "Pro" - 2°

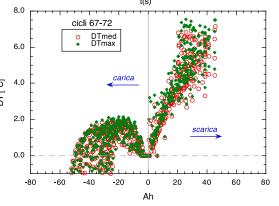
Analisi termica su ciclo "Pro" - Distribuzione superficiale della temperatura

- Andamento della temperatura lungo il profilo orizzontale
- Andamento della temperatura lungo il profilo verticale
- Spostamento della zona più calda con l'invecchiamento
- Assenza di punti caldi


Second Life - Prove vita profilo "Pro" - 3°




Analisi termica su ciclo "Pro": variazioni durante i cicli di lavoro


Riscaldamento rispetto ad inizio fase, in funzione del tempo

Riscaldamento, rispetto ad inizio fase, in funzione della quantità di carica

- •Temperatura in scarica: dopo i primi cicli ΔT +3°C, negli ultimi cicli ΔT +7°C
- •Temperatura in carica: dopo i primi cicli ΔT +2°C a fine fase, negli ultimi cicli ΔT +2°C ad inizio fase
- •Aumento di temperatura con l'invecchiamento: spostamento verso inizio fase

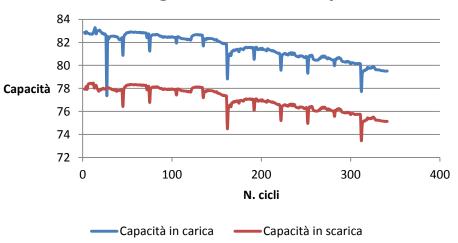
Second Life – Prove vita profilo "Light" - 1°

Definizione del profilo "Light"

	Carateristiche della fase				Condizioni di fine fase			
	Tipologia	A	V/W	RegD	Tempo	Capacità	Tensione	Corrente
1	Pausa			2s	10s			
2	Scarica I cost	30.0A		10 (/sec	10s	5.0Ah	2.5V min	
3	Scarica I cost.	30.0A		10s	170s	5-DAh	2.6V min	
4	Pausa			10 disec	54			
5	Pausa			- 5s	25s			
8	Scarica I cost	15.0A		10 (sec	10s	100.0Ah	2.5V min	
7	Scarica I cost	15.QA		30s	25200s	100.0Ah	2.5V min	
8	Pausa	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10 disec	10s			
9	Pausa			150s	1790s			
10	Carica I cost	15.0A		10 deec	10s	100.0Ah	3.8V max	
11	Carica V cost.	15.0A max	3.8V	30s	28800s	100.0Ah		1.0A mir
	2		1777	44	4.0			10000

Profilo "Light" 40 30 20 Corrente [A] 0 10000 20000 30000 40000 50000

Risultati delle prove di prestazioni elettriche su 5 celle

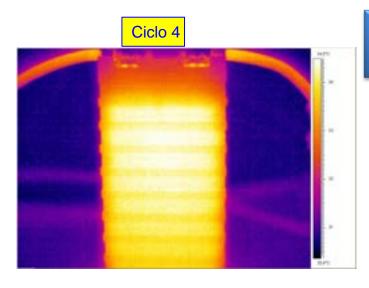

No significativa riduzione

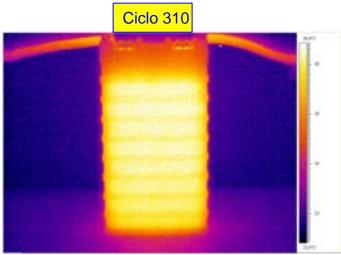
(~ 4% in 350 cicli)

No rigonfiamento

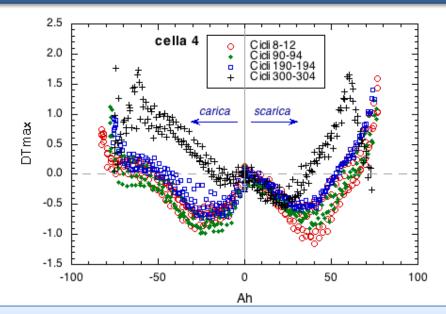
Profilo "Light" - Curve di capacità

Tempo [s]




-10

-20

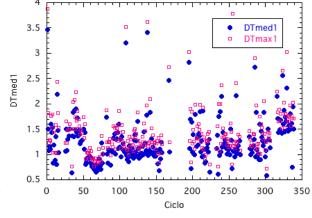

Second life – Prove vita profilo "Light" - 2°

Riscaldamento rispetto ad inizio fase, in funzione della carica elettrica erogata/assorbita

 ΔT molto minore rispetto al profilo "Pro" $\Delta T_{max.} = 1 \div 2$ °C

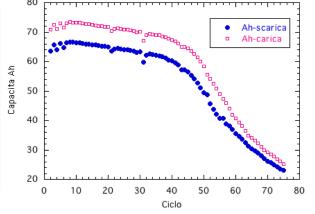
Le prestazioni peggiorano poco con l'invecchiamento

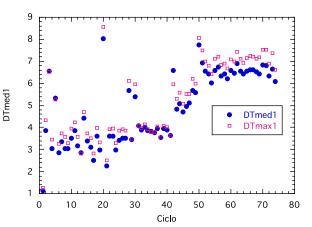
Second life – Confronto profilo "Light" e "Pro"



Confronto tra profilo "Light" e profilo "Pro" sulla base dell'elaborazione dei dati termografici

Profilo "Light"


- •344 cicli
- piccola diminuzione delle prestazioni elettriche
- •piccolo ΔΤ


82 Ah-scarica Ah-carica 74 72 70 50 100 150 200 250 300 350 Ciclo

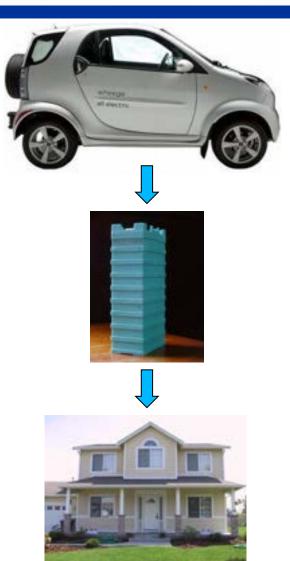
Profilo "Pro"

- •75 cicli
- sensibile diminuzione delle prestazioni elettriche
- ∆T elevato

Second life - conclusioni

L'impiego di batterie al litio in applicazioni di second life è fattibile

Vantaggi/obiettivi conseguibili:


- •sistemi energeticamente più efficienti
- •sistemi economicamente più convenienti

Vantaggi e benefici applicativi dovranno essere individuati e confermati sperimentalmente

Necessitano ulteriori sforzi di ricerca e sviluppo

- •definizione dei criteri di selezione delle celle
- definizione dei profili applicativi
- •sperimentazione di varie tecnologie di batterie al litio
- analisi degli aspetti di sicurezza

GRAZIE PER L'ATTENZIONE

Grazie per l'attenzione!!!

<u>francesco.vellucci@enea.it</u> <u>manlio.pasquali@enea.it</u>

