

Accordo di Programma MSE-ENEA

RICERCA DI SISTEMA ELETTRICO

REATTORI DI IV GENERAZIONE E SICUREZZA NUCLEARE

COLLABORAZIONE INTERNAZIONALE PER IL NUCLEARE DI IV GENERAZIONE

Mariano Tarantino (mariano.tarantino@enea.it)

Contesto Europeo

SNETP

- maintaining the safety and competitiveness of today's technologies (NUGENIA)
- developing a new generation of more sustainable reactor technologies (ESNII)
- developing new applications for nuclear power (NC2I)

ESNII

 addressing the need for demonstration of Generation IV Fast Neutron Reactor technologies, together with supporting research infrastructures, fuel facilities and R&D

SRIA

• provides decision-makers and the scientific community at large with research, development and demonstration roadmaps to achieve the short (2015), medium (2020) and long-term (2040-2050) goals of the SET Plan

SNETP – Sustainable Nuclear Energy Technology Platform

ESNII – European Sustainable Nuclear Industrial Initiative

SRIA – Strategic Research Initiative Agenda

Contesto Europeo

"STRATEGIC RESEARCH INITIATIVE AGENDA" (SRIA)

"With respect to the 2010 technologies evaluation....The Lead Fast Reactor technology has significantly extended its technological base and can be considered as the shorter-term alternative technology, whereas the Gas Fast reactor technology has to be considered as a longer-term alternative option."

Safety and Reliability
Sustainability
Economics
Proliferation resistance

SFR SCWR MSR LFR GFR 2000 2005 2010 2015 2020 2025 203

Viability

Basic concepts, technologies and processes are tested under relevant conditions, with all potential technical show-stoppers identified and resolved

Performance

Engineering-scale processes, phenomena and materials capabilities are verified and optimised under prototypical conditions

Demonstration

This phase involves the licensing, construction and operation of a prototype or demonstration system in partnership with industry and perhaps other countries. The detailed design will be completed and licensing of the system will be performed during this phase

FALCON CONSORTIUM*

- 18 months
- Unincorporated consortium
- In-kind contributions
- Optimize the cooperation
- Areas: <u>strategic</u>, <u>management</u>, <u>governance</u>, <u>financial</u> and technical

- Detailed agreement
- Manage the R&D needs
- Engineering design
- Licensing, and
- Commit the construction

EXPLOITING POTENTIAL SYNERGIES IN FUNDS

Synergic Funding Scheme

H2020

staff, equipment, travel, subcontracting Budget: 70% EC + 30% inkind by Partners (no ESIF!) **ESIF**

ERDF

Eligible cost: purchasing R&D equipment and instrastructures

Budget: ESIF from different Ops + relevant % of Public Funds (no H2020!)

ESF

iCRADLE

Infrastructure for Cooperative Research to Advance up to Demonstration the Lead technology in Europe

The iCRADLE proposal is meant to provide Europe with a Distributed Research Infrastructure (D-RI) for research, development and qualification (R&D&Q) of the Heavy Liquid Metal (HLM) technology for innovative nuclear reactors demonstration and, in a longer term, the safe and sustainable operation of future power plants

ALFRED

ALFRED is a Research Reactor, as part of an **pan-European Distributed Research Infrastructure**.

ALFRED is a **demonstrator**, and not a prototype, dedicated to the **development** of the LFR technology.

ALFRED is a 300 MWth reactor addressing the concerns on safety, economics and sustainability of nuclear energy.

Advanced Lead Fast Reactor European Demonstrator

Demonstration of a safer and more sustainable secure energy

Sinergie

- ☑ LEADER Lead cooled European Advanced Demonstrator Reactor
- **☑** THINS Thermal Hydraulic of Innovative Nuclear Systems
- **☑** FREYA Fast Reactor Experiments for hYbrid Applications
- ☑ GETMAT Gen IV and Transmutation Materials
- ☑ MATTER Materials Testing and Rules
- **☑ SEARCH** Safe Exploitation Related Chemistry for HLM reactors
- ☑ MAXSIMA Methodology, Analysis and Experiments for the "Safety In MYRRHA Assessment"
- ☑ ESNII+ Preparing ESNII for HORIZON 2020
- **☑** MARISA Myrrha Research Infrastructure Support Action
- ☑ MATISSE Materials' Innovations for a Safe and Sustainable nuclear in Europe
- **✓ MYRTE MYRRHA** Research and Transmutation Endeavour
- **SESAME** thermal hydraulics Simulations and Experiments for the Safety Assessment of MEtal cooled reactors

Struttura Generale

Infrastrutture ENEA

CIRCE



CIRCE - Fuel Pin Simulator

CIRCE - Experimental Results

NACIE-UP

HELENA

LECOR

Grazie!