

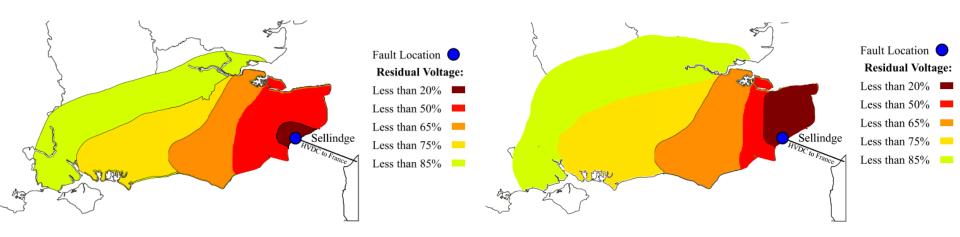
PTR 2022-2024 - Progetto 2.3

Evoluzione, pianificazione, gestione ed esercizio delle reti elettriche

Convertitore Grid-Forming con Avanzata Sovraccaricabilità

Relatori: Fabio Mandrile, Fausto Stella
Politecnico di Torino

03/12/2024



Introduzione

- Incremento generazione da fonti rinnovabili:
 - Riduzione generazione sincrona → Riduzione inerzia e supporto reattivo
 - Come erogare corrente di corto-circuito per innescare protezioni?

Guasto a Terra Trifase Bassa Penetrazione ER

Guasto a Terra Trifase Alta Penetrazione ER

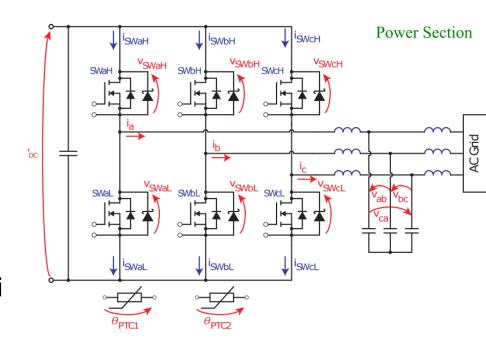
Servizi di Supporto alla Rete

- Fonti rinnovabili interfacciate con convertitori elettronici:
 - Non sono sovraccaricabili (bassa inerzia termica)
 - Non è possibile sovraccaricare i convertitori a semiconduttore (corrente nominale = corrente di sovraccarico)
 - Non supportano la rete in caso di guasto (algoritmo di controllo)
 - Tipicamente operati in logica MPPT (massima generazione)
 - Non contribuiscono alla corrente di corto-circuito e quindi a innescare le protezioni di sovracorrente nelle linee

Soluzione Proposta

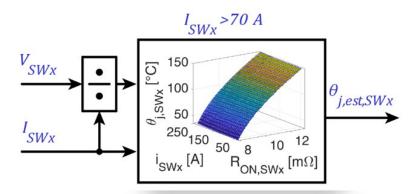
- Implementazione controllo VSM (Virtual Synchronous Machine)
 - Emula comportamento di un generatore sincrono tradizionale
 - Supporta la rete in caso di guasto
- Implementazione stima di temperatura real-time dei semiconduttori
 - Permette sovraccarico transitorio (centinaia ms)
 - Permette di mantenere convertitore all'interno della SOA durante il sovraccarico

Stima Temperatura Real Time Semiconduttori SiC



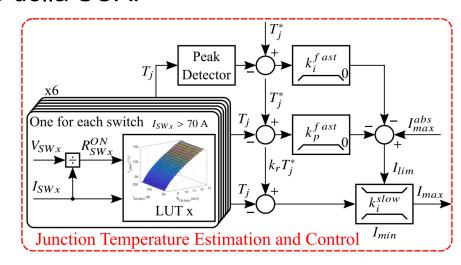
Layout di Potenza

- Classico convertitore per applicazioni da rete (SiC):
 - Misure standard per ogni convertitore da rete (VDC, correnti di fase, tensioni concatenate, temperatura dissipatore)
 - Aggiunta misura di tensione di conduzione semiconduttori



Stimatore di Temperatura

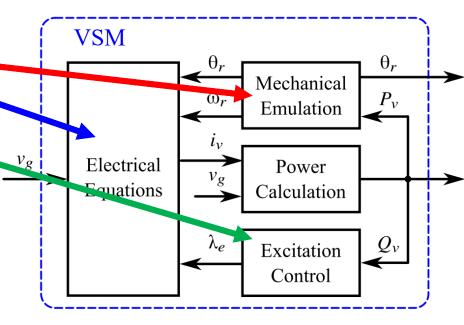
- Il convertitore proposto stima in real-time la temperature di giunzione dei semiconduttori:
 - Vengono misurate correnti e tensioni di conduzione dei componenti
 - Tramite una look up-table che è unica per ciascun componente viene stimata la temperatura di giunzione



Limitazione Termica

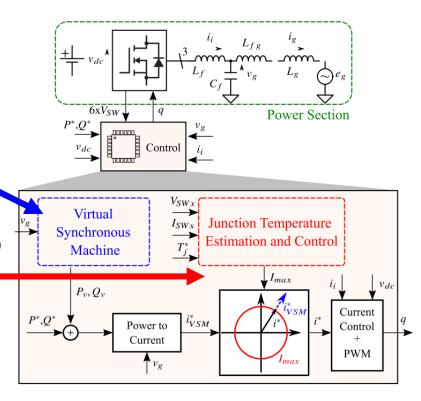
- La massima corrente erogata dal convertitore viene limitata per mantenere il convertitore all'interno della SOA:
 - Il massimo limite di corrente cambia nel tempo a seconda del punto di lavoro del convertitore
 - Limitatore termico mantiene le correnti erogate sinusoidali

Macchina Sincrona Virtuale (VSM)



VSM

- Algoritmo di controllo che emula generatore sincrono
 - Servizi ausiliari erogati:
 - Inerzia virtuale
 - Compensazione armonica
 - Supporto reattivo

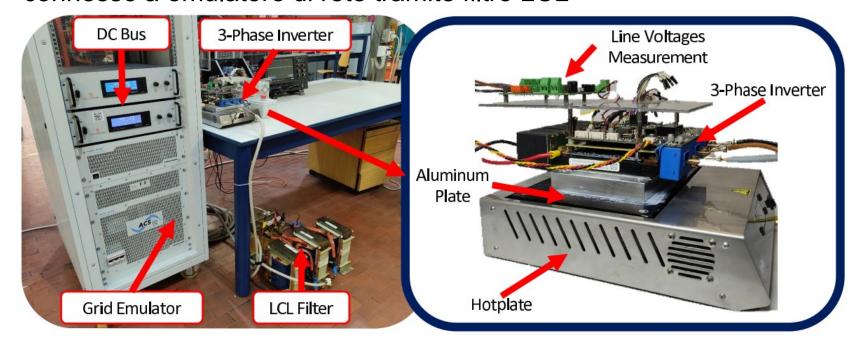

Schema di Controllo Aggregato

 Schema controllo VSM con limitatore attivo massima temperatura operativa di giunzione:

VSM genera riferimenti potenza "desiderati"

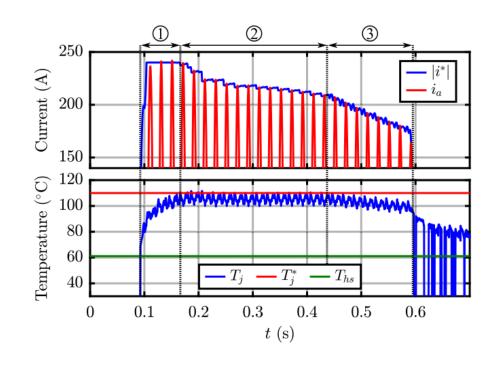
 Stima temperatura limita all'interno delle possibilità fisiche del convertitore

Validazione Sperimentale



Banco Test Sperimentale

 Inverter sperimentale con stima di temperatura e controllo VSM connesso a emulatore di rete tramite filtro LCL



Buco di Tensione

- Test con buco di tensione:
 - Durata 500 ms
 - Calo tensione -16%
 - $-T_{jmax}=110^{\circ}C$
 - Corrente impulsive massima
 240 A

 La risposta del controllo può essere divisa in tre intervalli distinti

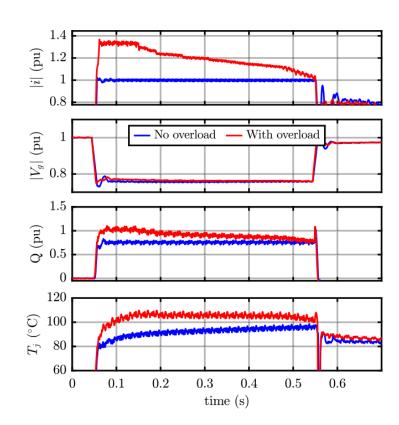
Iniezione di corrente

- 1. Iniezione massimo correnti impulsiva ammessa dal convertitore (240 A)
- 2. Limitazione attiva di corrente dopo raggiungimento limite termico (110 °C)

3. Corrente richiesta dal controllo VSM ritorna all'interno della SOA del

 $\perp i_{VSM}^*$ $_{\mid}i_{VSM}^{*}$ 350 I_{max} 300 Current 250 I_{max} 200 150 0.3 0.1 0.20.40.50.6 t (s)

convertitore



Comparazione con e senza sovraccarico

- Stesso buco di tensione due condizioni operative:
 - Convertitore operato fino al 100% della potenza nominale
 - Convertitore con sovraccarico al 133% della potenza nominale

Conclusioni

- L'utilizzo del VSM insieme alla stima di temperatura dei semiconduttori permette di:
 - Sovraccaricare transitoriamente il convertitore
 - Supportare efficacemente la rete in caso di guasto
 - Evitare di sovradimensionare convertitore

Grazie per l'attenzione!

